Laboratuvar

Laboratuvar Deneylerini Sanal Ortama Taşımak

Her gün dünyanın dört bir yanından kimyacılar bilgisayarlarında deneyler tasarlayıp gerçekleştiriyor. Martin Karplus, Michael Levitt ve Arieh Warshel’in geliştirdiği yöntemler (Laboratuvar Deneylerini Sanal Ortama Taşımak) sayesinde gözle görülemeyen karmaşık kimyasal süreçlerdeki en küçük adımların incelenebilmesi bugün mümkün.
 
Laboratuvar Deneylerini Sanal Ortama Taşımak, insanoğluna nasıl bir fayda sağlayabileceği hakkında bir fikir vermek için bir örnekle başlayabiliriz. Üzerinize bir laboratuvar önlüğü giyin, çünkü sizi bekleyen bir problem var: Yapay fotosentez oluşturmak. Yeşil yapraklarda gerçekleşen bu kimyasal tepkime atmosferi oksijenle doldurur ve Dünya üzerindeki yaşam için bir ön şarttır. Ancak bu tepkime çevresel bir bakış açısından da ilgi çekicidir. Eğer fotosentezi taklit edebilirseniz çok daha verimli güneş hücreleri oluşturabilirsiniz. Fotosentez sırasında su moleküllerinin parçalanmasıyla oksijen açığa çıkar, ancak onun yanında araçlarda yakıt olarak kullanılabilecek hidrojen de oluşur. Dolayısıyla bu projeyle ilgilenmek için yeteri kadar sebebiniz var. Eğer başarırsanız, sera etkisiyle ilgili problemin çözümüne de katkıda bulunabilirsiniz.
 
İlk aşamada muhtemelen internete girip fotosentezde yer alan proteinlerin üç boyutlu resimlerini bulacaksınız. Görüntüyü bilgisayarınızda istediğiniz gibi döndürüp çevirebilirsiniz. Bu görüntü on binlerce atomdan oluşan dev protein molekülünü ortaya koyar. Molekülün ortalarında bir yerde tepkime merkezi adı verilen küçük bir bölge vardır. İşte burası su moleküllerinin parçalandığı yerdir. Ancak sadece birkaç atom tepkimeye doğrudan dâhil olur. Diğer şeylerin yanı sıra dört manganez iyonu, bir kalsiyum ve birkaç oksijen atomu görürsünüz. Söz konusu görüntü atomların ve iyonların birbirine göre nasıl konumlandığını net bir şekilde gösterir, ancak atomların ve iyonların ne yaptığı konusunda hiçbir şey söylemez. Keşfetmeniz gerekense budur. Tepkime sırasında bir şekilde elektronların sudan ayrılması ve kalan dört protona göz kulak olunması gerekmektedir. Peki bu nasıl olur?
 
Bu süreçlerin ayrıntılarının geleneksel kimya yöntemleriyle ortaya konması imkansız gibidir. Bir milisaniyenden de (saniyenin binde biri) kısa bir sürede bir sürü şey olur. Deney tüplerindeki deneylerin çoğu bu hızda gerçekleşir. Bilgisayarınızdaki görüntüden tepkime sürecini tahmin etmek de güçtür, çünkü bu görüntü protein bir çeşit dinlenme halindeyken oluşturulmuştur. Gün ışığı yeşil yapraklara vurduğundaysa proteinler enerjiyle yüklenir ve atomların yapısı tamamen değişir. Kimyasal tepkimeyi anlayabilmek için enerji yüklü bu durumun neye benzediğini bilmeniz gerekir.
 
İşte bu noktada 2013 Nobel Kimya Ödülü’ne layık görülen üç bilim insanının temellerini attığı bilgisayar programlarının yardımına başvurarak “Laboratuvar Deneylerini Sanal Ortama Taşımak” gerekir.
 
Bu tür bilgisayar programları kullanarak kimyasal tepkimeleri bilgisayar ortamında canlandırıp çok çeşitli olası tepkime yolakları hesaplayabilirsiniz. Buna simülasyon ya da modelleme adı verilir. Bu şekilde belirli atomların kimyasal tepkimenin farklı aşamalarında nasıl bir rol oynadığı konusunda fikir sahibi olabilirsiniz. Elinizde akla yatkın bir tepkime yolağı olduğundaysa gerçek deneyler yaparak bilgisayarın söylediğinin doğru olup olmadığını kontrol etmek daha kolaydır. Öte yandan bu deneyler daha da iyi simülasyonlara imkan verebilecek ipuçları ortaya koyabilir, böylece kuram ve uygulama karşılıklı olarak birbirini besler. Sonuçta kimyagerler artık deney tüpleriyle olduğu kadar bilgisayarlarla da vakit geçiriyor.

 
Peki Nobel Kimya Ödülü’nü kazandıran bu bilgisayar programlarıyla ilgili bu kadar özel olan şey ne?

Önceleri bilim insanlarının molekülleri bilgisayar ortamında canlandırabilmesi için ya klasik Newton fiziğine ya da kuantum fiziğine dayalı bilgisayar programları vardı. İki tiptekilerin de güçlü ve zayıf yanları vardı. Klasik programlar büyük kimyasal moleküllerle ilgili hesapları gerçekleştirebiliyor ve onların üzerinde işlemler yapabiliyordu. Bunlar molekülleri sadece dinlenme durumundayken gösteriyorsa da atomların moleküllerde nasıl konumlandığını iyi bir şekilde betimliyordu. Ancak bu programlar kimyasal tepkimeleri canlandırmak için kullanılamazdı. Tepkime sırasında moleküller enerjiyle yüklenir, yani uyarılır. Klasik fizik moleküllerin bu tür durumları için bir açıklama getirmez, buysa ciddi bir kısıtlılıktır.

Kimyasal tepkimeleri canlandırmak isteyen bilim insanlarının elektronların hem parçacık hem de dalga olabildiğini ve Schrödinger’in meşhur kedisinin hem canlı hem de ölü olabildiğini varsayan ikicil kuram olan kuantum fiziğine dönmeleri gerekti. Kuantum fiziğinin güçlü yanı taraflı olmaması ve modelin bilim insanlarının önyargılarını barındırmaması. Dolayısıyla ona dayalı canlandırmalar daha gerçekçi oluyor. Olumsuz yanıysa muazzam bir hesaplama gücü gerektirmesi. Bilgisayarın moleküldeki her bir elektronla ve atom çekirdeğiyle ilgili tek tek işlem yapması gerekir. Bu, sayısal bir görüntüdeki piksellerin durumuna benzetilebilir. Çok sayıda piksel yüksek çözünürlük sağlar, ama aynı zamanda daha güçlü bilgisayar altyapısı gerektirir. Benzer şekilde kuantum fiziği hesaplamaları da kimyasal süreçlerin ayrıntılı betimlemelerini ortaya koyar ancak daha fazla hesaplama gücü gerektirir. 1970’li yıllarda bu, bilim insanlarının sadece küçük moleküller üzerinde hesaplama yapabileceği anlamına geliyordu. Üstelik gerçek yaşamdaki tepkimeler çoğunlukla bir çeşit çözelti içinde gerçekleştiği halde modelleme yaparken dış çevreyle olan etkileşimi ihmal etmek zorunda kalıyorlardı. Çözeltiyi hesaba katacak olsalar sonuçları almak için onlarca yıl beklemeleri gerekirdi.

Dolayısıyla klasik kimyayla kuantum kimyası temelden farklı ve bazı açılardan rakip iki ayrı dünyaydı. Ancak bu yılın Nobel Kimya Ödülü sahipleri bu iki dünya arasında bir kapı açtı. Onların geliştirdiği bilgisayar modellerinde Newton’un elmasıyla Schrödinger’in kedisi işbirliği yapıyor.
 

Kuantum Fiziğinin Klasik Fizikle İşbirliği

Bu işbirliğine doğru ilk adımlar 1970’lerin başında Martin Karplus’ın Cambridge’deki Harvard Üniversitesi’nde bulunan (ABD) laboratuvarında atıldı. Karplus kuantum dünyasından geliyordu. Karplus’ın araştırma ekibi kimyasal tepkimeleri kuantum fiziği yardımıyla canlandırabilen bilgisayar programları geliştiriyordu. Karplus ayrıca moleküllerin kuantum kimyasına özgü özelliklerine dayanan, kimyagerler arasında iyi bilinen nükleer manyetik rezonans (NMR) yönteminde kullanılan Karplus denklemini geliştirmişti. Arieh Warshel’se 1970’te doktorasını bitirince Karplus’ın laboratuvarına geldi. Warshel doktora eğitimini İsrail’de Rehovot’taki Weizmann Bilim Enstitüsü’nde almıştı. Enstitünün elinde Yahudi folklorundaki bir yaratıktan esinlenilerek Golem adı verilmiş güçlü bir bilgisayar vardı. Ariah Warshel ve Michael Levitt, Golem’in yardımıyla klasik kuramlara dayalı çığır açıcı bir bilgisayar programı geliştirmişti. Program her türlü molekülün, hatta hayli büyük moleküllerin bile modellenebilmesini sağlıyordu.
 
Arieh Warshel Harvard’da Martin Karplus’a katıldığında klasik bilgisayar programını da yanında getirdi. Bu programı çıkış noktası olarak kullanan Warshel ve Karplus farklı elektronlar üzerinde farklı türlerde hesaplamalar yapan yeni bir bilgisayar programı geliştirdi. Çoğu molekülde her bir elektron belirli bir atom çekirdeğinin yörüngesinde hareket eder. Ancak bazı moleküllerde belirli elektronlar birkaç atom çekirdeği arasında hiçbir engele takılmadan gidip gelebilir. Bu tür “serbest” elektronlar, örneğin gözdeki retinaya gömülü haldeki retinal adlı molekülde bulunabilir. Karplus’ın retinale öteden beri ilgisi vardı çünkü molekülün kuantum kimyasına özgü özellikleri belirli bir biyolojik işlevi etkiliyordu; retinaya ışık vurduğunda serbest elektronlar enerjiyle yüklenir ve bu da molekülün biçimini değiştirir. Bu, insanın görme sürecinin ilk basamağıdır.
 
Sonunda Karplus ve Warshel retinali modellemeyi başardı. Ancak işe daha basit yapıdaki benzer moleküllerle başladılar. Serbest elektronlarla ilgili işlem yaparken kuantum fiziğine dayanan, diğer tüm elektronlar ve atom çekirdekleri içinse daha basit klasik kuramlara dayanan bir bilgisayar programı geliştirdiler. 1972’de de sonuçlarını yayımladılar. Bu, klasik fizikle kuantum fiziği arasında kimyasal açıdan anlamlı bir işbirliği oluşturulabilmesi açısından bir ilkti. Program çığır açıcıydı ancak kısıtlı olduğu bir yön vardı. Sadece ayna simetrisine sahip molekülleri ele alabiliyordu.
 

Yaşamın Kimyasına İlişkin Hesaplamalar İçin Evrensel Bir Program

Harvard’daki iki seneden sonra Arieh Warshel, Michael Levitt’le tekrar bir araya geldi. Levitt o zaman DNA, RNA ve proteinlerle ilgili araştırmalarda dünya lideri konumunda olan Cambridge Üniversitesi’ndeki doktorasını yeni bitirmişti. Biyolojik moleküllerin neye benzediğini daha iyi anlamak amacıyla klasik bilgisayar programını kullanmıştı. Ancak kısıtlılık yine geçerliydi; moleküller sadece dinlenme durumundayken incelenebiliyordu.
 
Levitt ve Warshel hedeflerini yüksek tuttu. Canlı organizmalardaki kimyasal tepkimeleri yöneten ve kolaylaştıran proteinler olan enzimleri araştırmak amacıyla kullanılabilecek bir program geliştirmek istediler. Warshel daha genç bir öğrenciyken enzimlerin nasıl işlediğini merak etmeye başlamıştı. Yaşamı mümkün kılan şey enzimler arasındaki işbirliği. Vücuttaki hemen hemen tüm kimyasal süreçleri enzimler kontrol ediyor. Eğer yaşamı anlamak istiyorsanız enzimleri anlamanız gerekiyor.
 
Enzimlerle gerçekleşen tepkimeleri canlandırabilmek için Levitt ve Warshel’in klasik fizikle kuantum fiziğinin daha sorunsuz şekilde işbirliği yapmasını sağlaması gerekiyordu. Tüm zorlukları aşmaları yıllarını alacaktı. Rehovot’daki Weizmann Enstitüsü’nde araştırmalarına başladılar, ancak Levitt birkaç yıl sonra doktora sonrası eğitimini tamamlayıp Cambridge’e dönerek tekrar Warshel’e katıldı. 1976’da hedeflerine ulaştılar ve enzimlerle gerçekleşen bir tepkimeye dair ilk bilgisayar modelini yayımladılar. Programları devrim niteliğindeydi, çünkü her türlü molekülle kullanılabiliyordu.
 
Artık moleküllerin büyüklüğü kimyasal tepkimeleri canlandırırken bir sorun olmaktan çıkmıştı.
 

Tepkimenin Kalbine Odaklanmak

Bugün kimyagerler kimyasal süreçleri modellerken hesaplama gücünü sadece gerekli yerlerde kullanıyor. Yüklü kuantum fiziği hesaplamalarını tam olarak kimyasal süreci doğrudan etkileyen elektronlar ve atom çekirdekleri üzerinde yapıyorlar. Böylece asıl önemli olan kısımda mümkün olan en iyi çözünürlüğü elde ediyorlar. Moleküllerin kalan kısımları klasik denklemler kullanılarak modelleniyor.

Michael Levitt ve Arieh Warshel bilgisayar gücünü boşa harcamamak için hesaplama iş yükünü daha da azalttı. Bilgisayarın molekülün çok ilginç olmayan kısımlarındaki her bir atomu hesaba katması gerekmiyor.

Levitt ve Warshel hesaplamalar sırasında birkaç atomun birleştirilebileceğini gösterdi.

Günümüz hesaplamalarında bilim insanları canlandırmaya üçüncü bir katman daha ekliyor. Basitçe anlatılırsa, bilgisayar kimyasal süreçten çok uzaktaki bölgelerdeki atomları ve molekülleri tek bir homojen kütle halinde demetliyor. Bilimsel literatürde bu kütleye “dielektrik ortam” deniyor.

 
Canlandırmaların Bizi Nerelere Götüreceğini Zaman Gösterecek

Bilim insanlarının bugün deney yapmak için bilgisayarlardan yararlanabiliyor olması kimyasal süreçlerin nasıl gerçekleştiğine ilişkin çok daha derin bir anlayış sağladı. Martin Karplus, Michael Levitt ve Arieh Warshel’in geliştirdiği yöntemlerin güçlü yanı evrensel olmaları. Bu yöntemler yaşamsal moleküllerden endüstrideki kimyasal süreçlere kadar her konudaki kimyasal araştırmalarda kullanılabiliyor. Bilim insanları bu yöntemlerle örneğin güneş hücrelerini, motorlu araçlardaki katalizörleri ve hatta ilaçları optimize edebiliyor.

Ancak bu konudaki ilerleme durmayacak. Michael Levitt bir yayınında bu konudaki rüyalarından birini anlatıyor: Canlı bir organizmayı bilgisayar ortamında moleküler düzeyde canlandırmak. Bu kışkırtıcı bir düşünce. 2013 Nobel Kimya Ödülü sahiplerinin geliştirdiği modeller güçlü araçlar. Bu araçların bilgimizi daha ne kadar geliştirebileceğini ise zaman gösterecek.

Yeşil Kalem

Daha yeşil ve güzel bir Dünya için yola çıkan Yeşil Aşkı, herkesi Dünya’ya zarar vermeden, çevre dostu ve sürdürülebilir bir yaşama davet ediyor. Bütün gayemiz; temiz bir çevre, yaşanabilir bir dünya ve yeşil gören gözlerdir. Yeşil görmeyen gözler, Renk zevkinden mahrumdur.

blank

Bir yanıt yazın

E-posta adresiniz yayınlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir